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A theory for the diffuse scattering intensity owing to short-range order (SRO) in

quasicrystals is given. The diffuse scattering intensity can be calculated based on

higher-dimensional cluster models of quasicrystals. It is determined by the

overlapped area (or volume) of occupation domains separated from each other

by distances up to the correlation length and the SRO correlation functions. It is

applied to a random atom distribution in phason flip sites in the Penrose pattern.

To confirm the validity of the derived formula, analytical and numerical results

for this case have been compared. Both results give similar diffuse scattering

intensity, suggesting the validity of the theory.

1. Introduction

X-ray and neutron scattering experiments are standard tech-

niques for investigating the pair correlation of atoms in crys-

tals with some kind of disorder. Scattered intensities of

materials can be classified into two terms: the Bragg reflection

and diffuse scattering intensities. It is known that the Fourier

transform of the pair correlation function of the (electron or

nucleus) density of materials gives the total scattering inten-

sity (van Hove, 1954). This general theory is, however, difficult

to apply to the analysis of diffuse scattering in materials, so that

several approximations have been proposed. When a structure

includes some kind of disorder, the Bragg reflection intensity

determines its average structure. The deviation (fluctuation)

from the average structure causes the diffuse scattering.

There are two kinds of fluctuations which contribute to the

diffuse scattering intensity in different ways. They are the

fluctuations of atomic positions and the (electron or nucleus)

densities of atoms in time and space. The diffuse scattering

intensity in crystals is classified into three components: short-

range order (SRO), size-effect, and thermal and Huang diffuse

scattering. They correspond to zeroth-, first- and second-order

terms in a Taylor expansion of the correlation function in

terms of the atom displacement parameter (Welberry &

Butler, 1994). The thermal diffuse scattering (TDS) and the

Huang diffuse scattering (HDS) in crystals are well known;

they originate in the thermal excitation of phonons and

distortions due to the inclusion of some kind of point defect

(Dietrich & Fenzel, 1989; Welberry & Butler, 1994). In TDS

and HDS, the correlation length of the atomic displacement

parameter is long, while that of the density is in many cases

short. Depending on these different natures, different

approaches are used in the approximations in the former and

latter theories, i.e. the reciprocal- and real-space approaches

(Welberry & Butler, 1994).

The short-range order (SRO) and/or size effect, which

comes from the coupling of the density and displacement

fluctuations, give rise to the diffuse intensity that is separate

from the Bragg peaks. The theory of SRO diffuse scattering

(Cowley, 1950) is extensively applied to the diffuse scattering

in alloys and other materials (Welberry & Butler, 1994). In

particular, SRO diffuse scattering is often observed in alloys

that show an order–disorder-type phase transition.

In quasicrystals the Bragg scattering intensity can be

calculated using a higher-dimensional description and this

method is extensively used in the structure analysis of quasi-

crystals (Yamamoto, 1996; Weber & Yamamoto, 1998; Taka-

kura, Yamamoto & Tsai, 2001; Cervellino et al., 2002;

Takakura et al., 2007). This description is necessary in the

analysis of diffuse scattering intensity, as shown later.

TDS exists in quasicrystals and HDS is expected to exist if

quasicrystals include point defects. In addition, phason diffuse

scattering (PDS), which is specific to quasicrystals, exists. This

is considered to be caused by long-wavelength collective

modes of atomic jumps, which are called phason flips. These

theories extract the contribution to the diffuse scattering

intensity of long-range correlations between atoms, using

hydrodynamical approximations, in which a detailed structure

of quasicrystals is not taken into account. They contain only

some macroscopic constants, like phonon or phason elastic

constants (Jarić & Nelson, 1988; Lei et al., 1999; Ishii, 2000).

Owing to the macroscopic nature of these theories, they only

explain the diffuse scattering around the Bragg peaks. Their

characteristic feature is that the diffuse scattering intensity

decays as jqj�2, where q is a vector in reciprocal space from the

Bragg reflection (Dietrich & Fenzel, 1989; Jarić & Nelson,

1988; Boissieu et al., 1995).

Since most quasicrystals are alloys (Tsai, 1999) and some

quasicrystals show phase transitions between quasicrystalline

phases (Ritsch et al., 1998), which are considered to be related

to some kind of order–disorder phenomena, SRO diffuse

scattering is, as expected, observed in several quasicrystals

(Frey & Steurer, 1993; Abe et al., 2000, 2003; Weidner et al.,

2004). This has, however, not been analyzed in detail so far,



since quasicrystals have no periodicity along at least two

directions and therefore the classical theory of SRO diffuse

scattering for crystals cannot be applied to quasicrystals.

Recently, the diffuse scattering around the main reflections

of the basic Ni-rich phase of a decagonal Al–Ni–Co quasi-

crystal (d-Al–Ni–Co) has been analyzed based on the hydro-

dynamical theories of diffuse scattering (Abe et al., 2007) and

it was clarified that the application of the theories of TDS and

PDS does not explain the diffuse scattering intensity around

the Bragg peaks. Monte Carlo simulations of the disorder in

Al and the transition metals (TMs) showed that the correla-

tion length of Al–TM extends up to 40–50 Å. This is much

longer than the interatomic distance, but shorter than the

correlation of PDS. In addition, Kobas et al. (2005) showed

that the PDS and TDS in the S1 phase of d-Al–Ni–Co can

explain the diffuse scattering intensity within the range

jqj � ð1=60Þ Å�1. They suggest that an interatomic correlation

that is greater than 60 Å can be interpreted by PDS. These

experiments suggest that a theory of SRO diffuse scattering in

quasicrystals is necessary.

An analytical formula for SRO diffuse scattering intensity

can be derived by using a higher-dimensional description of

quasicrystals, as in the structure-factor calculations. Even if no

periodicity exists in quasicrystals, we can calculate the

frequency of atom pairs with short interatomic distances.

Under appropriate assumptions, the SRO diffuse scattering

intensity is determined by the frequency of such pairs and

vectors connecting a pair of atoms with a similar local envir-

onment. It is known that the frequency is proportional to the

overlapped area (volume) of the occupation domains (ODs)

for related atoms (Yamamoto, 1996). Therefore, the diffuse

scattering intensity can be calculated from the higher-

dimensional description of quasicrystals. In a case where

longer-range correlation is important, however, this theory

will encounter a difficulty, since the number of different

environments rapidly increases with increasing distance and

this makes calculations difficult.

In the case of the basic Ni-rich phase in d-Al–Ni–Co, we

need to consider medium-range order, as mentioned above.

Therefore, the theory should be applicable to medium-range

order. The direct calculation of diffuse scattering intensity

using interatomic correlation functions is difficult in such a

case. However, if we can use an inter-cluster correlation

function, the calculation will be largely simplified as shown in

this paper. The theory of SRO diffuse scattering will be

applicable to such a case as long as we need to consider neither

shorter nor much longer correlation than the inter-cluster

distance. Clusters with a diameter of � 20 Å (20 Å clusters)

are found in d-Al–Ni–Fe and d-Al–Ni–Co. The correlation

lengths in these quasicrystals are therefore not much longer

than this inter-cluster distance.

In addition to the lack of theory for SRO diffuse scattering

in quasicrystals, there was an experimental difficulty. A decade

ago, the measurement of SRO diffuse scattering was not easy,

since it appears everywhere in reciprocal space, in contrast to

TDS and HDS. The development of two-dimensional X-ray

(or neutron) detectors enabled the measurement of diffuse

scattering in a wide reciprocal-space region. For example,

single-crystal diffraction data measured by CCD cameras

usually include intensities from the whole of reciprocal space

within a diffraction-angle limit, since more than several

hundred frames are measured using a small sample rotation

angle (less than 0.5�). This provides the diffuse scattering

intensity together with the Bragg intensities. One can easily

reconstruct the intensity distribution in reciprocal space from

intensities of pixels on the detector by projecting a pixel

intensity onto the Ewald sphere. The method is equally

applicable to crystals and quasicrystals. Thus, a theory for

SRO diffuse scattering in quasicrystals is desired.

In this paper we derive an analytical formula for the SRO

diffuse X-ray scattering intensity in quasicrystals. It is applied

to the diffuse scattering owing to the phason flip in the

Penrose pattern (PP) and the results are compared with the

numerical results to confirm the validity of the formula. (A

preliminary result of this paper has been published: Yama-

moto, 2008.) In order to apply the derived formula to realistic

quasicrystals, several approximations are discussed. The

extension of the derived formula to neutron magnetic scat-

tering will be given in a separate paper (Yamamoto, 2010).

The arrangement of the paper is as follows. The diffuse

scattering intensity calculations are based on higher-

dimensional cluster models. The latter are briefly summarized

in x2. x3 briefly discusses the interatomic distances in these

models. A general formula is derived in x4. This does not

include symmetry operations. The formula is rewritten in x5

using the symmetry operations for practical applications. In

realistic cases the disorder in quasicrystals will be complicated,

so we consider approximations of the general theory. When

the diffuse scattering occurs due to the orientational disorder

of atom clusters, the expression can be simplified. This is

discussed in x6 for several cases. In order to validate the

derived diffuse scattering intensity formula, it is applied to the

case of phason flips in the PP in x7 and the analytical result is

compared with the result of numerical calculations.

2. Higher-dimensional cluster models

It is known that a structure of quasicrystals is obtained from an

n-dimensional (nD, n � 5) periodic structure by taking an

intersection of a three-dimensional hyperplane parallel to

external space. The structure obtained does not depend on the

position of the three-dimensional hyperplane in nD space. The

structures obtained from different hyperplanes are locally

isomorphic to each other. In other words, one structure can be

mapped onto another if it is shifted appropriately in external

space. In such a description, all atom positions are obtained

from ODs in the nD unit cell (Yamamoto, 1996).

For real quasicrystals, it is known that there are several

large ODs in which several parts are occupied by different

kinds of atoms. It is also known that quasicrystals can be

described by several building units, which fill most of the space

(Henley & Elser, 1986; Henley, 1991). They are called clusters.

In a higher-dimensional cluster model, such large ODs are

divided into smaller ones based on the ODs for the cluster
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centers. Each point in a small OD corresponds to an atom

position in a cluster or a position of an interstitial atom, which

connects clusters. In the structure analysis of quasicrystals,

each small OD plays the role of an independent atom in a unit

cell in conventional crystals. The small OD gives an atom

position with an almost similar local environment at a short

distance.

Since quasicrystals lack periodicity in physical space, if we

consider the environment of an atom up to very long distances

no atom is equivalent to any other. However, there are many

atoms which have almost equal environments in the short

range.

In the case of statistically disordered cluster orientations,

ODs for all possible clusters with different orientations need

to be considered. Let the ith atom of a cluster be located at xe
i

from the cluster center (in external space). When the OD for a

cluster center is known, all the atom positions in the cluster

can be generated by the ODs which are shifted parallel to

external space over xe
i from the OD position of the cluster

center in nD space. That is, when the OD for the cluster center

is at xc in the unit cell of the n-dimensional space, the OD for a

constituent atom in the cluster is given by ODs at xc þ xe
i . In

order to describe the same quasicrystal structure we can use

these small cluster ODs and ODs for interstitial sites rather

than using the large ODs mentioned above.

3. Interatomic distances

In the theory of SRO diffuse scattering for crystals the number

of atomic pairs with the same interatomic distance needs to be

known. The number of pairs is easily calculated since all

interatomic distances are calculated from an interatomic

vector between two atoms within the unit cell and a lattice

vector. It is clear that the same method is not applicable to

quasicrystals because of the loss of periodicity. Nevertheless,

we can calculate all the necessary interatomic distances in

principle based on the nD description of quasicrystals. In this

theory, an average structure of disordered quasicrystals is

described as a periodic structure in n-dimensional space. Each

atom is extended in parallel to the ðn� 3Þ-dimensional

internal (complementary) space within a limited area/volume

(Yamamoto, 1996). This area is the OD.

In the simplest theory of SRO diffuse scattering, we assume

that atomic positions are not disturbed by a change of atomic

species on a site (Cowley, 1950; Welberry & Butler, 1994).

Therefore, all atoms are assumed to be located at the same

positions as in the average structure. In the n-dimensional

description all atom positions in the external (physical) space

can be given by the location and size of the ODs within the

unit cell of n-dimensional space. Using this description, the

interatomic distances of all atoms in quasicrystals are calcu-

lated by the common area (volume) of ODs which are

projected onto the internal (fictitious complementary) space

(Yamamoto, 1996). This will be described later.

As an example, an estimation of the frequency of a specified

pair in quasicrystals is shown in the case of the one-

dimensional section of the PP, which is known as one of the

simplest quasiperiodic patterns [Fig. 1; for the PP, see Fig.

2(a)]. This is given as a four-dimensional periodic structure.

The unit vectors of the four-dimensional reciprocal lattice are

given by

d�i ¼
a�

51=2
½cia1 þ sia2 þ c2ia3 þ s2ia4	 ði � 4Þ; ð1Þ

where a� is the reciprocal-lattice constant, ci ¼ cosð2�i=5Þ,

si ¼ sinð2�i=5Þ and a1 and a2 are the unit vectors in external

space, while a3 and a4 are those of the internal space. From the

relation d�i 
 dj ¼ �ij, the unit vectors in the direct lattice are

di ¼
2a

51=2
½ðci � 1Þa1 þ sia2 þ ðc2i � 1Þa3 þ s2ia4	 ði � 4Þ; ð2Þ

where a is the lattice constant, that is a ¼ 1=a�. In the

following, a vector with
P4

i¼1 xidi is written as ðx1; x2; x3; x4Þ. In

particular ði; i; i; iÞ=5 ði ¼ 1; 2; 3; 4Þ are written as xi . Their

external and internal space components are denoted by the

superscripts e and i.

Real atom positions of the PP are obtained from a periodic

structure in four-dimensional space, in which four ODs are

located in the unit cell. The ODs at x1 and x2 (ODs A and B,

hereafter) are regular pentagons as shown in Figs. 3(a) and

(b), while those at x4 and x3 (ODs C and D) are the pentagons

which are obtained from ODs A and B by the inversion
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Figure 1
Two-dimensional section of the four-dimensional structure of the Penrose
pattern in a subspace spanned by d1 ¼ ð0; 1; 1; 0Þ and d2 ¼ ð1; 0; 0; 1Þ.
The thin solid lines show a face-centered lattice in this subspace. At
ði; i; i; iÞ=5 ði ¼ 1; 2; 3; 4Þ, there are four occupation domains which are
denoted by A (blue), B (purple), C (red) and D (green). The external and
internal spaces spanned by a1 and a3 are parallel to the horizontal and
vertical lines. On the external space (the thick horizontal line), there are
three interatomic distances with ��1d, d and �d labeled by s; 1 and l,
respectively, where d ¼ 2a=51=2. The interatomic distances just above the
horizontal line correspond to those on the horizontal line in Fig. 2(a).



operation. The radius of the corner of OD A is 2a=51=2, while

that of OD B is 2�a=51=2, where � is the golden mean,

ð1þ 51=2Þ=2. The two-dimensional hyperplane spanned by a1

and a3 passing through the origin is shown in Fig. 1. A rhombic

lattice (thick lines) exists. The unit vectors of this lattice are

given by d01 ¼ ð0; 1; 1; 0Þ and d02 ¼ ð1; 0; 0; 1Þ. The external

and internal space components of the former are �2�a and

�2��1a, while those of the latter are �2��1a and �2�a. The

internal space component of a lattice point l1d0i1 þ l2d0i2 is,

therefore, given by �2ðl1�
�1 þ l2�Þa. The points of all the

lattice points projected onto the internal space are then

uniformly distributed and this ensures that the point density of

the cross points of the ODs with the external space is

proportional to the length of the ODs (Elser, 1986). This leads

to the property that the frequency of an interatomic distance

�xe
ijl ¼ xe

i � xe
j � xe

l between a pair of atom positions gener-

ated by ODs at xi and xj þ xl is proportional to the overlapped

area (length in this case) of these ODs when they are

projected onto the internal space (vertical line), where xl is a

lattice vector (Yamamoto, 1996).

The unit vectors of the rectangular lattice (thin lines) in Fig.

1 are given by d01 � d02 and d01 þ d02. (Note that in Fig. 3, a3 and

a4 are parallel to the horizontal and vertical directions, while

in Fig. 1, a3 is parallel to the vertical direction.) Several ODs

(vertical bars) cross the external space (the horizontal line)

and their cross points give the atom positions in the external

space. Three nearest-neighbor distances exist: d1 ¼ �
�1d,

d2 ¼ d and d3 ¼ �d with d ¼ 2a=51=2. The overlapped areas

giving these interatomic distances are denoted in Fig. 1 by the

labels S, I and L.

Finally we consider (fictitious) four-dimensional and (real)

five-dimensional or six-dimensional quasicrystals. In the PP,

which is considered to be a fictitious quasicrystal with two-

dimensional external space, the necessary dimension of the

external space is 2 and that of the internal space is 2. The

overlapped area is then two-dimensional. In real decagonal

quasicrystals they are 3 and 2, while for icosahedral ones they
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Figure 2
(a) Penrose pattern and (b) phason-flipped Penrose pattern. They are
generated by the occupation domains shown in Fig. 3. Their atom
positions flipped by the random phason to each other are shown in
hexagons in (c). The two-dimensional hyperplanes for all the cases pass
through (1, 2, 3, 4)/100. The horizontal line in (a) corresponds to the line
just above the horizontal line in Fig. 1. Note that the sequence of the
interatomic distances on this line (denoted by s; 1 and l) agrees with that
in Fig. 1.

Figure 3
Occupation domains (ODs) of the Penrose pattern and phason-flipped
Penrose pattern. The ODs (a) and (b) are located at (1, 1, 1, 1)/5 and
(2, 2, 2, 2)/5 in four-dimensional space. There are two other ODs, which
are obtained from these two by the inversion center at the origin. The
corresponding inverted domains are represented by a primed number in
the text. The former pattern is generated by ODs 1–4, and the latter by
ODs 1, 2, 5 and 6.



are 3 and 3, respectively. Similar to the above fictitious two-

dimensional quasicrystal, if the internal space is two- or three-

dimensional, the interatomic distances between atoms gener-

ated by some ODs are proportional to the overlapped area or

volume of the ODs.

In a real quasicrystal in which there are several ODs in a

unit cell, the position of the ith OD in the unit cell is specified

by xi and an n-dimensional lattice vector by xl . The frequency

of the interatomic vector, �xe
ijl ¼ xe

jl � xe
i , which is the external

space component of the difference between xi0 ¼ xi and

xjl ¼ xj þ xl, is therefore proportional to the overlapped area

(volume) of the ODs located at these points when they are

projected onto the internal space. As is clear from Fig. 1, for

most lattice vectors xl the area is zero, but for lattice vectors

with a small internal space component the area will have a

non-zero value.

4. Short-range order diffuse scattering

In kinematical theory the scattered intensity in quasicrystals

can be derived from a general formula (see Appendix A). This

formula gives both Bragg reflection and diffuse scattering

intensities. We treat these two contributions separately. It is

well known that the first one can be calculated by an

n-dimensional model of quasicrystals, as previously men-

tioned. This description is applicable to the calculation of the

diffuse scattering intensity, but we do not need to consider the

scattering vector in n-dimensional space as shown below.

We consider a simple case where one atomic site is occupied

by m atomic species and neglect the size effect (Warren et al.,

1951). This is extended later to more complicated cases where

there are clusters with several different orientations.

We assume that the correlation between atoms decreases

rapidly with the interatomic distance. Provided that all atoms

generated by the ith small OD have a similar local environ-

ment, the correlation between the atoms generated by the ith

and jth small ODs will be almost the same. We can calculate

the number of pairs of such atoms by the overlapped area

(volume), vijl � vijð�xi
ijlÞ, of the ith and jth ODs when they are

projected onto internal space. It is given by Vvijl=�n, where V

is the volume of the quasicrystal (in external space), while �n

denotes the unit-cell volume of an n-dimensional lattice. (Note

that vijl=�n gives the number of pairs in a unit volume of

external space.) The number of pairs depends on the indices i

and j, since the areas of ODs are different in different OD

pairs in general. The SRO diffuse scattering intensity is then

given by

IDðqÞ ¼
V

�n

X

l

X

ij��

h�f�i �f ��j ivijl

� expð2�iq 
�xe
ijlÞ; ð3Þ

where �f�i ¼ f�i ðqÞ � hfiðqÞi is the fluctuation of the atomic

scattering factor of the �th atom species of the ith OD from its

average, f�i ðqÞ is the atomic scattering factor, the expression

hxi means the statistical average of a quantity x over the

quasicrystal and the asterisk stands for the complex conjugate

(see Appendix A). In the following we simply write f�i and hfii

rather than f�i ðqÞ and hfiðqÞi.

The atomic fluctuations are expressed by the statistical

variables z�il ð� ¼ 1; 2; . . . ;mÞ, which can assume values of

zero and one. A value of one for z�il indicates that the ith

atomic site in the n-dimensional unit cell l is occupied by the

�th atom; all other z�il ð1 � � � mÞ with the same i and l must

then have a value of zero. The average of z�il , hz
�
i i, is the

occupational probability of the �th atom species which

occupies the ith OD and is independent of the lattice vector xl.

This means that hz�i i takes a value between 0 and 1 in general.

Its fluctuation, z�i0 � hz
�
i i, is denoted by �z�i0. Note that the

average structure factor hfii of the ith atomic site located at xi0

is given by hfii ¼
P

� f�hz�i i. Since the structure factor of the

ith atom is then given by fi ¼
P

� f�z�i ¼
P

� f�ðhz�i i þ�z�i0Þ,

the fluctuation of the structure factor for the ith site is written

as �fi ¼
P

� f��z�i . In the same manner, when we consider

the atomic site which is generated by the ODs at xjl, the

atomic scattering factor in this site is given by

fj ¼
P

� f�ðhz�j i þ�z�jl Þ and its fluctuation by �fj ¼P
� f��z�jl .

We introduce the correlation function hz�i0z�jli, which is the

probability of finding the �th atom at xi0 and the �th atom at

xjl, and the correlation functions of the fluctuation h�z�i0�z�jli.

The latter is equal to hz�i0z�jli � hz
�
i ihz

�
j i. The average of the

fluctuation in the atomic scattering factors is then given by

h�fi�fji ¼
P
��

f�f �g��ijl ; ð4Þ

where g��ijl � g��ij ð�xe
ijlÞ = h�z�i0�z�jli = hz�i0z�jli � hz

�
i ihz

�
j i. (We

use the latter notation, g��ij ð�xe
ijlÞ, which specifies the inter-

atomic (inter-OD) vector explicitly.)

The correlation function of the fluctuation is related to the

SRO parameter (Warren et al., 1951) �ijl � �
��
ij ð�xe

ijlÞ by

g��ijl ¼ �hz
�
i ihz

�
j i�

��
ijl : ð5Þ

The relation
Pm

�¼1hz
�
i0z�jli ¼ hz

�
i i leads to the identity

g��ijl ¼ �
P
� 6¼�

g��ijl : ð6Þ

Owing to this relation, (3) is rewritten as (Hayakawa & Cohen,

1975)

IDðqÞ ¼ ��
P
ijl

P
�>�

jf� � f �j2g��ijl vijl expð2�iq 
�xe
ijlÞ; ð7Þ

where � ¼ V=�n and the scattering vector q is a vector in

external space. In the summation in (7), i and j only run over

ODs in the n-dimensional unit cell, which are statistically

occupied, since for the ODs which are fully occupied by a

single atomic species the correlation function g��ijl is zero. (For

such a site, �f�i ¼ 0 for all �.) On the other hand, l runs over

several lattice points in a quasicrystal, which generate near

neighbors of the ith OD, since we assume that the correlation

function g��ijl rapidly becomes zero when the distance j�xe
ijlj

increases.

It should be noted that the above expression is formally

different from the corresponding formula in crystals only by

the existence of vijl and the fact that �xe
ijl is a projection of a
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vector in n-dimensional space onto external space. Thus, if we

know vijl , we can calculate the diffuse scattering intensity

owing to SRO occurring in quasicrystals.

5. Symmetry of quasicrystals and diffuse scattering
intensity

In the n-dimensional description of quasicrystals, there are

several small ODs. They are related by the symmetry opera-

tors, fRj�g, of an n-dimensional space group. Consider small

ODs located at xi and xj, and their transformed ODs at fRj�gxi

and fRj�gxj. Since fRj�g is a symmetry operator, the original

and transformed pairs will have identical correlation functions,

since the local environments of the original and transformed

pairs is the same except for the orientation. Therefore, we

assume that they give the same correlation function and

overlapped area. Then (7) is rewritten as

IDðqÞ ¼ � �
P
ijl

vijl

P
�>�R

jRf� � Rf �j2

� g��ijl expð2�iq 
 R�xe
ijlÞ; ð8Þ

where Rf� ¼ f�ðR�1qÞ. In this expression, i, j and l run over all

values which give rise to independent (statistically occupied)

OD pairs, while R runs over all the symmetry operators which

generate new but equivalent vectors from �xijl. Therefore, the

summation with respect to R depends on xe
ijl. When we use the

multiplicities for this vector aijl � aijð�xijlÞ the above formula

is rewritten as

IDðqÞ ¼ � �
P
ijl

vijlaijl

P
�>�R

jRf� � Rf �j2

� g��ijl expð2�iq 
 R�xe
ijlÞ; ð9Þ

where R runs over all the symmetry operations in the point

group. The multiplicity aijl is determined by the order of the

group, which leaves the vector �xijl invariant.

6. Orientational disorder of clusters

In some quasicrystals we can simplify the calculation of diffuse

scattering more.

There is a case where the disorder occurs in the central part

of a cluster. In this case we only need to consider statistically

occupied atomic sites located near the cluster center. One

important example of this kind of disorder is the orientational

disorder of a small cluster at the center of the large cluster. In

this case we can expect the situation where the outer shells in

each cluster are distorted corresponding to the orientation of

the small cluster, but with magnitudes that become smaller

with increasing distance from the center. If the distortion of a

cluster is negligible in the outermost shell of the cluster, we

can consider clusters with almost the same structure but with

different orientations. In such a case we can treat the cluster as

a rigid cluster. Then the atomic scattering factor f can be

replaced by the structure factor of the cluster F in the

formulae given in the previous sections. Unlike a spherical

atom, a rigid cluster is non-spherical, leading to an anisotropic

F. Using F we can calculate the diffuse scattering intensity

with medium-range order efficiently.

For example, in the icosahedral Cd–Yb quasicrystal family,

a lower-symmetric cluster exists called the Tsai-type cluster,

the first shell of which is considered to have a tetrahedral

atomic arrangement and is orientationally disordered in a

similar way to its 1/1 crystalline approximants (Gomez &

Lidin, 2003; Takakura et al., 2007). In this case, the point

symmetry of the cluster is 23 and the point group of the

quasicrystal is m 3 5. The orders are 12 and 120, which indi-

cates that ten different orientations of the tetrahedron exist. In

the basic Ni-rich phase in Al–Ni–Co quasicrystals, there is one

cluster with fivefold symmetry. It takes, however, two orien-

tations. One cluster is related to the other by an 18� rotation

(Yamamoto et al., 2005). These two cases have only one rigid

cluster but with several different orientations.

In some cases, a quasicrystal can be composed of several

different clusters with different orientations. Such a compli-

cated model might be necessary near the phase-transition

temperature between b-Ni and S1 phases of d-Al–Ni–Co

quasicrystals. In the former, a cluster with a mirror symmetry

exists (m cluster), while in the latter the symmetry is fivefold

(5f cluster; Takakura, Shiono et al., 2001; Abe et al., 2001). We

can consider ten and two different orientations for the former

and the latter. Therefore, we need to consider several different

clusters and their orientations.

6.1. Orientational disorder of one cluster

We consider a simple case where each site is occupied by

one cluster, but with different orientations. In a cluster-based

orientational disorder, we can use ODs for the cluster center

in the calculation of �ijð�xijlÞ rather than the ODs for statis-

tically occupied atoms in the case of atomic disorder. We

denote the cluster orientation by � (or �). Like the orienta-

tional disorder of molecules in crystals (Welberry & Butler,

1994), we can use the structure factor of the cluster with the

�th orientation F� rather than the atomic scattering factor f�

in (9). Then the diffuse scattering intensity is given by

IDðqÞ ¼ � �
P
ijl

vijlaijl

P
�>�R

jRF� � RF�j
2

� g��ijl expð2�iq 
 R�xe
ijlÞ; ð10Þ

where F� is the structure factor of a cluster with the �th

orientation, which is located at the ith cluster center, while

RF� denotes the structure factor for a rotated cluster,

F�ðR�1qÞ. (In the calculation of F�, the atom position of each

atom is measured from the cluster center.) In the derivation of

this formula we used the fact that the overlapped area for all

the atoms within a cluster is equal to that of the cluster center

vijl.

6.2. Disorder of several clusters

We consider a case where one site is occupied by several

different clusters and each cluster takes several different

orientations. Such a case can be included in the formula

described in the previous section as mentioned below. Let the
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index � indicate the difference in the cluster orientation and

the difference in the kind of clusters. When we denote the

structure factor of a cluster with some orientation as F�, we

can use (10) for such a general case since we do not consider

the shape of the cluster in the derivation of the formula. For

example, in the case of d-Al–Ni–Co, we can specify the five

orientations of the m clusters by 1 � � � 5 and the two

orientations of the 5f clusters by 6 � � � 7, when the m and

5f clusters occupy one site statistically. We do not need to

distinguish the difference of clusters from the difference of

orientations. Whenever one site is occupied by clusters with m

different structure factors F� (1 � � � m), we can apply (10).

[However, in the practical calculations of the structure factors,

the structure factor with a different orientation F�ðqÞ can be

easily derived from that of the first orientation by applying a

symmetry operator R, that is F�ðqÞ ¼ F1ðR�1qÞ.]

7. Examples of SRO diffuse scattering in quasicrystals

We consider one simple example, which is a disorder on the

atomic level caused by the phason flip in the PP. The diffuse

scattering intensity is calculated by (9). The same diffuse

scattering intensity can be calculated in a different way using

the cluster formula [see (10)], as shown later.

In the following for aijl � aijð�xijlÞ, vijl � vijð�xi
ijlÞ, g��ijl �

g��ij ð�xe
ijlÞ and �ijl � �

��
ij ð�xe

ijlÞ, the latter notations are used to

specify a related interatomic (inter-OD) vector explicitly.

7.1. Random phason flips in the Penrose pattern

It is known that the PP consists of fat and thin rhombi (Fig.

2a). This can be described as a four-dimensional periodic

structure and it is generated by the occupation domains with

four pentagons situated at ði; i; i; iÞ=5 ði ¼ 1; 2; 3; 4Þ. In this

fictitious case the external space is two-dimensional. These

positions are written as xi. Their two independent ODs

consisting of ODs 1–4 are shown in Fig. 3(a). Another pattern

consisting of the same rhombi (Fig. 2b) is obtained from the

ODs 1, 2, 5 and 6. Note that in this case the ODs are decagons

with empty parts in the inside. The second one is obtained

from the PP by the so-called phason flip. The phason flip

positions of the PP are in the two kinds of hexagons shown in

Fig. 2(c). We call the fat and thin ones hexagons (I) and (II).

When one of the phason flip sites is randomly occupied, we

have random tiling consisting of the same rhombi. This is a

random tiling model due to random phason flip [referred to as

model (I) hereafter].

For convenience, we consider two atoms denoted by A and

B. When a pair of these two sites are occupied by A (or B)

together with other vertices of the PP, we call it an AA (BB)

pair. Similarly, when one is occupied by A and the other by B it

is called an AB pair. We assume that the first letter denotes the

position in the PP shown in blue points in Fig. 2(c). If we

consider the case where the B atom is a vacancy, we can

characterize a model by A and B atom pairs. In model I, there

are only AB or BA pairs.

When we allow the same atoms to occupy the two phason

flip sites at the same time we obtain two other models. In the

second model [model (II)], only AA and BB pairs exist with a

probability of 0.5, while in the third one [model (III)] there are

AA, BB, AB and BA pairs with a probability of 0.25. In all

cases we assume that there is no correlation between phason

flip sites located at different hexagons.

For all the cases the average structure can be represented by

the ODs shown in Fig. 3 provided that ODs 3, 4, 5 and 6 are

occupied with the occupation probability of 0.5, while ODs 1

and 2 are occupied with 1. Therefore, the Bragg reflection

intensity is the same for all of them. As shown in the following,

however, they give completely different diffuse scattering. As

stated previously, the sites fully occupied by a single atom do

not contribute to the diffuse scattering intensity, so we can

neglect the sites generated by ODs 1 and 2 in the diffuse

scattering intensity calculations. The ODs 3 and 5 generate the

phason flip sites in hexagon (I), while the ODs 4 and 6

generate those in hexagon (II). The area of ODs 4 and 6 is �2

times larger than that of ODs 3 and 5. The vectors between the

two phason flip sites are given by �x1 ¼ ð1; 1; 0; 1Þ and

�x2 ¼ ð�1; 1;�1; 0Þ and equivalent ones which are related to

these by the fivefold rotation and inversion operations.

Before discussing the correlation functions of the three

models, we first consider the self-correlation functions g��ii ð0Þ

which are 1/4 for i ¼ 3; 4; 5; 6, where 0 is the zero vector. This

gives the so-called Laue monotonic diffuse scattering, which is

given by [using the relations v33ð0Þ = v55ð0Þ, v44ð0Þ = v66ð0Þ ¼

�2v33ð0Þ etc, see Appendix B]

ILðqÞ ¼
�jf Aj

2

2
v33ð0Þð1þ �

2
Þ: ð11Þ

This does not depend on the three models.

The other correlation functions for these three models are

different. From this assumption, the non-zero correlation

functions of the models (except for the self correlation) are

g��ij ðR
n
5�xe

1Þ, g��ij ðR
n
5�xe

2Þ, g��ij ðIRn
5�xe

1Þ and g��ij ðIRn
5�xe

2Þ for

ði; jÞ ¼ ð3; 50Þ and ð4; 60Þ and n ¼ 0; 1; 2; 3; 4. (I and R5 are the

inversion and the fivefold rotation.) They are equal to

g��ij ð�xe
1Þ, g��ij ð�xe

2Þ, g��ij ð�xe
1Þ and g��ij ð�xe

2Þ, respectively. The

overlapped area of ODs for these pairs are the same as the

summation of areas of ODs 3 and 50 and that of ODs 4 and 60.

(For the meaning of a primed letter, see the caption of Fig. 3.)

From g��ijl ¼ hz
�
i0z�jli � hz

�
i ihz

�
j i and hz�i i ¼ 1=2 for 3 � i; j � 6,

we have gAB
350 ð�xe

1Þ = gBA
350 ð�xe

1Þ = gAB
460 ð�xe

2Þ = gBA
460 ð�xe

2Þ = 1/4 in

model I. [Note that hz�i0z�jli=hz
�
i i is the conditional probability

of the �th atom found at xjl when the �th atom is at xi0. When

OD 3 is occupied by the A (or B) atom, OD 5 is always

occupied by B (or A).] In contrast, in model (II) they are

�1=4, while in model (III) they are all zero since hz�i0z�jli for

xijl ¼ x1 and x2 are 1/4 for any � and �. (Note that AA, AB, BA

and BB pairs exist with the occupation probability of 1/4 in

this case.)

From equation (9), the additional diffuse scattering inten-

sity of these three cases is given by
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IDðqÞ � ILðqÞ

¼ �
�jf Aj

2

4
v350 ð�xi

1Þ
�X

R

gAB
350 ð�xe

1Þ expð2�iq 
 R�xe
1Þ

þ �2
X

R

gAB
460 ð�xe

2Þ expð2�iq 
 R�xe
2Þ
�
þ c:c:; ð12Þ

(where c.c. is complex conjugate) since the B atom is a

vacancy, so that f B ¼ 0 and R runs over five rotation operators

that rotate by 2�j=5 ð j ¼ 0; 1; 2; 3; 4Þ. For simplicity, we

assumed that the A atom is spherically symmetric, so that

Rf A ¼ f A. The correlation functions for models (I) and (II)

lead to

IDðqÞ � ILðqÞ ¼
�jf Aj

2

4
v350 ð�xi

1Þ
�

X

R

expð2�iq 
 R�xe
1Þ

 �2
X

R

expð2�iq 
 R�xe
2Þ
�
þ c:c:; ð13Þ

where the upper and lower signs correspond to models (I) and

(II). Therefore, a hump of the diffuse scattering intensity in

model (I) corresponds to a dip in model (II) and vice versa.

Note that at q ¼ 0 the total intensity IDðqÞ of model (I) is zero

since the two exponential functions are 1, while it takes the

maximum value in model (II).

Models (I) or (II) have a dip or hump at the strong Bragg

reflection positions, as shown below. In such a position the

vector q is given as the projection of a lattice vector in four-

dimensional space onto the external space. Let the four-

dimensional lattice vector be q0. Then q0e ¼ q. Strong Bragg

reflections appear at the position q when the internal space

component of the corresponding q0 is small. Since the vectors

�x1 and �x2 are lattice vectors in four-dimensional space, it

means that for such a q0, q 
�xe
i ’ q0 
�xi ’ 0 mod 1,

(i ¼ 1; 2). Thus, for a similar reason as for the case of q ¼ 0,

the diffuse scattering intensity around such q has a dip in

model (I) and a hump in model (II) as mentioned above.

Equations (11) and (13) give the diffuse scattering intensity

shown in Figs. 4(a) and 5(a). For simplicity, we used a point

atom, for which the atomic scattering factor has no q depen-

dence.

The diffuse scattering intensity can be calculated directly by

numerical calculations (Welberry, 1991). For a given atom

arrangement, its Fourier amplitude at the diffraction vector q

can be obtained by a numerical Fourier transformation. Using

the Fourier amplitude FðqÞ of a given atom distribution, the

total scattered intensity is given by jFðqÞj2 (except for the

scaling factor). This includes Bragg intensity, which is much

stronger than the diffuse scattering intensity. The contribution

to the Bragg scattering can be removed by using the fluctua-

tion of the occupation probability for each atomic site instead

of the occupation probability itself (Yamamoto, 2008). The

calculated diffuse scattering intensity distribution, however,

shows strong so-called speckle noise, since no ensemble

average was taken into account in contrast to the analytical

one. This noise can be reduced by taking an ensemble average.

The patterns of models (I) and (II) after taking a 1000

ensemble average are shown in Figs. 4(b) and 5(b). It is

evident that the analytical and numerical results are quite

similar, suggesting the validity of the analytical intensity

formula.

7.2. Random phason flips as cluster disorder

The case of the phason flips mentioned above [model (I)]

can be regarded as cluster disorder. The cluster in this case is
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Figure 4
Diffuse scattering intensities of model (I) calculated analytically (a) and
numerically (b), where one of the phason flip sites shown in Fig. 2(c) is
occupied randomly. The intensity is denoted by the rainbow colors shown
in (c), blue being the lowest and red the highest. In the numerical
calculation, a 1000 ensemble average is taken to reduce the speckle noise.
The interval of the scale is 5a� [a� ¼ 2=ð51=2arÞ, where ar is the edge length
of the Penrose pattern shown in Fig. 2].



an AB atom pair in the hexagons in Fig. 2(c). The cluster

center is at the midpoint of A and B atomic sites. Then there

are two possible orientations for each cluster. We will refer to

them as up and down orientations. Note that there are five AB

atom-pair directions which are related by fivefold rotations.

Their cluster centers are generated by the OD having the same

rhombus with ODs 3 and 5, or 4 and 6 at x1 þ�xe
1=2 or

x2 þ�xe
2=2. The clusters located at these two centers are

denoted by n ¼ 1 and 2. Then the structure factors of the

clusters for the up orientation are F1 ¼ f A expð�iq 
�xe
1Þ and

F2 ¼ f A expð�iq 
�xe
2Þ, while those for the down orientation

are F1� and F2�. Denoting the two orientations in cluster 1 by

� ¼ 1; 2 and those of cluster 2 with � ¼ 3; 4, the diffuse

scattering intensity is given as

IDðqÞ ¼ � �½v33ð0Þ
P
R

jRF1 � RF1�j
2g12

11ð0Þ

þ v44ð0Þ
P
R

jRF2 � RF2�j
2g34

22ð0Þ	: ð14Þ

This leads to the same total diffuse scattering intensity [the

sum of equation (11) and the upper sign part of equation (13);

see Appendix B].

8. Discussion

The scattered intensity of SRO diffuse scattering in crystals is

obtained from equation (9) by setting vijl ¼ vijð�xi
ijlÞ to 1 for

all interatomic vectors �xijl in three-dimensional space and �n

to the volume of the unit cell of a crystal �,

IDðqÞ ¼ � N
P
ijl

aijl

P
�>�R

jRf� � Rf �j2

� g��ijl expð2�iq 
 R�xijlÞ; ð15Þ

where N ¼ V=� is the number of unit cells in a crystal; the

superscript e is dropped, since the vector x indicates a vector

in three-dimensional physical space. In this expression, f� is

the atomic scattering factor of the �th atom or the structure

factor of the �th cluster (molecule) in the (three-dimensional)

unit cell. It is noted that the essential difference between a

crystal and a quasicrystal exists in the calculation of the

frequency vijðx
i
ijlÞ of atom pairs distant from each other by xijl .

This is given by the overlapped area (volume) of ODs in

quasicrystals, while it is always 1 in crystals (except for the

multiplicity aijl).

It can be shown that equation (15) is equivalent to a classic

formula for binary crystals with only one atomic site in the unit

cell (m ¼ 2 and n ¼ 1). We drop the indices i and j for

simplicity since they are always 1; g��l � g��11l. In this case,

provided that the atom is located at the origin, the above

equation becomes

IDðqÞ ¼ � N
P

l

al

P
R

jf 1 � f 2j
2g12

l

� expð2�iq 
 RxlÞ: ð16Þ

The multiplicity al � aðxlÞ is determined by the order of the

group, which is a subgroup of a point group and leaves the

lattice vector xl invariant. From the definition, we have g12
l =

hz1
0z2

l i � hz
1
0ihz

2
l i in this simple case. For Cu3Au, hz1i= 	 ¼ 3=4

and hz2i ¼ 	0 ¼ 1=4 provided that the first and second atoms

are Cu and Au. When hz1
0z2

l i = hz2
0z1

l i = 
ðlÞ we obtain

g12
l ¼ g21

l ¼ �		
0 þ 
ðlÞ. Thus, (16) is expressed by

IDðqÞ ¼N
P

l

P
R

alj�f j2½		0 � 
ðlÞ	

� expð2�iq 
 RxlÞ; ð17Þ

where 
ð0Þ ¼ 0 and �f ¼ f 1 � f 2.

The value of 
ðlÞ is limited within 0 � 
ðlÞ � 	0. When


ðlÞ ¼ 	0, we have ½		0 � 
ðlÞ	 ¼ �	02. In the completely
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Figure 5
Diffuse scattering intensities of model (II), which are calculated
analytically (a) and numerically (b), where the two phason flip sites in
Fig. 2(c) are occupied or both empty. The intensity is denoted by the same
rainbow colors as in Fig. 4(c). In the numerical calculation, a 1000
ensemble average is taken to reduce the speckle noise. The scale interval
is the same as in Fig. 4.



ordered superstructure with body-centered cubic lattice,


ðlÞ is 0 or 	0 depending on the lattice vector xl. Then

�g12
l ¼ ½		

0 � 
ðlÞ	 is 3=16 or �1=16. The correlation function

g12
l is related to the � parameter by g12

l ¼ �		
0�12

l , as

mentioned previously, so that these correlation functions

correspond to 1 and �1/3 of the � parameters, in agreement

with the values shown by Cowley (1950).

A general formula for the orientational disorder in rigid

clusters [see (10)] is applicable to the case where clusters with

mirror symmetry (m clusters) are located in five different

orientations at the cluster sites in the S1 phase. Kobas et al.

(2005) analyzed the diffuse scattering intensity of the S1 phase

under the assumption that the five m clusters are randomly

distributed over their cluster centers. In this special case, (10)

is proportional to
P

� jF
� � hFij2, where F� is the structure

factor of the m cluster with �th orientation and

hFi � ð1=10Þ
P10

�¼1 F� is the average structure factor of all the

m clusters with different orientations (see Appendix C). It was

shown that such a simple model explains the diffuse scattering

intensity distribution qualitatively.

It is known that the S1 phase consists of pentagonal clusters

(5f clusters) with two different orientations and the b-Ni

phase consists of m clusters (Yamamoto et al., 2005). Since the

b-Ni phase is the high-temperature phase of the S1 phase, it is

expected that a part of the 5f clusters is transformed into m

clusters near the transition temperature to the b-Ni phase.

Then the probability of 5f clusters at each cluster center will

not be one in the S1 phase. Therefore, we can expect that the

diffuse scattering intensity is also related to the structure

factors of the 5f clusters. The analysis mentioned above

suggests that this contribution is small. If this is negligible, it

means that some sites are completely occupied by a 5f cluster

and others are occupied only by m clusters randomly, since five

different cluster centers exist in the S1 phase (Yamamoto et al.,

2005) and the site completely occupied by a single cluster does

not contribute to the diffuse scattering intensity. Thus, the sites

occupied by the m clusters will be some specific sites, but

where such sites are is not known.

It is also known that the b-Ni phase shows broad peaks at

the satellite positions in the S1 phase (Abe et al., 2003). This

implies that 5f clusters exist with non-zero inter-cluster

correlation in the b-Ni phase. Therefore, we need to consider a

case where the m clusters and the 5f clusters coexist near the

phase-transition temperature in both phases. The present

diffuse scattering intensity formula is applicable to such a

complicated but more realistic model as mentioned in x6. The

model building of such a model is, however, beyond the scope

of this paper.

9. Summary and concluding remarks

An analytical expression has been derived for the diffuse

scattering intensity owing to the short-range order of atoms or

clusters in quasicrystals. The formula is similar to that for

conventional crystals except for the factors giving the

frequencies of the interatomic (inter-cluster) vectors. In

quasicrystals, they are calculated by using the overlapped area

(volume) of the occupation domains in their n-dimensional

description. The diffuse scattering intensity calculation using

this formula is demonstrated for phason flip disorder in the

Penrose pattern. The validity of the formula was confirmed by

comparing it with results from numerical calculations. The

derived formula is general and includes symmetry. Therefore,

the diffuse scattering intensity of quasicrystals can be calcu-

lated efficiently owing to their high symmetries.

APPENDIX A
Derivation of a diffuse scattering intensity formula

For simplicity, we consider a fictitious quasicrystal composed

of a single atom. Then in the kinematical theory of X-ray

scattering, the scattered intensity of X-rays with the scattering

vector q is proportional to (van Hove, 1954)

IðqÞ ¼
R
V

dxe
R
V

dx0e �ðxeÞ�ðx0eÞ
� �

exp½2�iq 
 ðxe � x0eÞ	; ð18Þ

where V is the volume of a quasicrystal. The integrals over xe

and x0e are taken over the volume of the material. In quasi-

crystals it is known that the atomic structure is given by an

n-dimensional description, and the three-dimensional struc-

ture is obtained from its n-dimensional model by taking a

three-dimensional intersection (Yamamoto, 1996). The elec-

tron density in the n-dimensional space is continuously

extended within an OD. The position of each atom in the

three-dimensional external space is obtained as the intersec-

tion of an OD with three-dimensional space, so that electron

density in the external space is described by

�ðxe
Þ ¼

P
l

P
i

�iðx
e � xe

ilÞDið�xi
ilÞ; ð19Þ

where �iðx
eÞ is the electron density of the ith atom located at

the origin, and xe
il and xi

il are the external and internal space

components of the positional vector of the center of the ith

OD in the lth unit cell of an n-dimensional lattice, xi þ xl. The

function Diðx
iÞ is the occupation probability and it is one when

xi is within the ith OD located at the origin, otherwise it is

zero. The index l runs over all the lattice points in the

n-dimensional lattice, while i runs over all the ODs in the unit

cell. Owing to Dð�xi
ilÞ, only ODs near the three-dimensional

external space (hyperplane) give the atom position. Using the

above expression, (18) is rewritten as

IðqÞ ¼
R
V

dxe
R
V

dx0e
P
lm

P
ij

exp½2�iq 
 ðxe � xe0Þ	

� �iðx
e � xe

ilÞ�iðx
0e � xe

jmÞ
� �

Dið�xi
ilÞDjð�xi

jmÞ

¼
P
lm

P
ij

hfif
�
j iDið�xi

ilÞDjð�xi
jmÞ expð2�iq 
�xe

iljmÞ; ð20Þ

where fi � fiðqÞ =
R

V dxe expð2�iq 
 xeÞ�ðxeÞ is the atomic

scattering factor of atoms which occupy the ith OD in the unit

cell of the n-dimensional lattice, while �xe
iljm = xe

il � xe
jm. (We

assume that hfii is independent of l.) This expression includes

the Bragg intensity in addition to the diffuse scattering

intensity. The former and the latter are from the first and

second terms of hfif
�
j i = hfiihf

�
j i þ h�fi�f �j i, where �fi ¼
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fi � hfii and �fj ¼ fj � hfji. The Bragg intensity, IBðqÞ, is given

by

IBðqÞ ¼
P

li

hfiiDið�xi
ilÞ expð2�iq 
 xe

ilÞ

����
����

2

: ð21Þ

Using Diðx
i
ilÞ =

R
dqi Diðq

iÞ expð�2�iqi 
 xi
ilÞ [or Diðq

iÞ =

ð2�Þ�d=2
R

dxi Diðx
iÞ expð2�iqi 
 xi

ilÞ ðd ¼ n� 3Þ], this is

rewritten as

IBðqÞ ¼
R

dqi LðqnÞFðqnÞ
�� ��2; ð22Þ

where LðqnÞ =
P

l expð2�iqn 
 xlÞ is the periodic delta function

(the Laue function) in n-dimensional space and FðqnÞ is the

structure factor. The latter is given by

FðqnÞ ¼
P

i

fi

� �
Diðq

iÞ expð2�iqn 
 xiÞ ð23Þ

with the n-dimensional vectors qn = qþ qi and xi = xe
i þ xi

i.

Equation (22) implies that the Bragg intensity can be obtained

by the projection of the structure factor in n-dimensional

space onto the external space.

On the other hand, the diffuse scattering intensity is given

by

IDðqÞ ¼
X

lm

X

ij

h�fil�f �jmiDið�xi
jmÞDjð�xi

ilÞ

� expð2�iq 
�xe
iljmÞ

¼
V

�n

X

l

X

ij

h�fi0�f �jl ivijð�xi
ijlÞ

� expð2�iq 
�xe
ijlÞ; ð24Þ

where �n is the volume of the unit cell of the n-dimensional

lattice, while vijð�xi
ijlÞ is the overlapped areas (volume) of the

ith and jth ODs located at xi0 and xjl. In a higher-dimensional

model a large OD is subdivided into several smaller ones, so

that each small OD gives a similar local atom environment.

Provided that all the large ODs are subdivided into such small

ODs, h�fi0�f �jl i is almost independent of the lattice vector l.

When the ith and jth sites are occupied by m different atom

species, fi and fj are replaced by f�i and f �i in the above

equation and the summation with respect to ij is replaced by

that of ij��. Thus, equation (3) is obtained.

APPENDIX B
Phason flips and cluster disorder

In case of the phason flip in the PP we can use a fictitious

cluster consisting of one atom with the structure factor

F i ¼ f A expð2�q 
 R�xe
i =2Þ, as described in the text, so that

RF i � RF i� = 2f A sinð2�q 
 R�xe
i =2Þ. This leads to

jRF i � RF i�j
2 = ð2jf Aj

2
Þ½1� cosð2�q 
 R�xe

i Þ	. On the other

hand, from the overlapped area of the ODs we have

ð1=5Þv33ð0) = v350 ð�xi
1Þ, ð1=5Þv44ð0Þ = v460 ð�xi

2Þ, v44ð0Þ =

�2v33ð0Þ, g12
350 ð0Þ = g12

460 ð0Þ ¼ �1=4. Therefore, equation (14) is

equal to the sum of (11) and the upper sign part of (13).

APPENDIX C
Diffuse scattering intensity for clusters with no inter-
cluster correlations

We consider a case where a cluster has m different orienta-

tions and there is no correlation between clusters located at

different sites. Then the non-zero correlation function

components are only g��ð0Þ = ðhz�i � 1Þ=hz�i2 and g��ð0Þ =

�hz�ihz�i (� 6¼ �). In such a simple case, equation (10) is

reduced (except for the scale factor) to
X

�>�

jF� � F�j2hz�ihz�i

¼
1

2

X

�;�

jF� � F�
j
2
hz�ihz�i

¼
1

2

X

�;�

jF�j
2
� 2ReðF�F��Þ þ jF�j

2
� �

� hz�ihz�i

¼
X

�

jF�j
2
� jhFij2

� �
hz�i; ð25Þ

where hFi =
P

� F�hz�i. (Note that hFi does not depend on �,

so that
P

�hFihz
�i = hFi since

P
�hz

�i = 1.) This is equal to

the average of the squared deviation of the structure factor of

the �th orientation from the average structure factor,
P
�

jF� � hFij2hz�i; ð26Þ

since this gives
P
�

jF�j2 � 2ReF�hF�i þ jhFij2
� �

� hz�i; ð27Þ

and (27) is equal to (25). (Note that Re
P

� F�hz�ihF�i =

jhFij2.) Equation (26) ensures the non-negativity of the diffuse

scattering intensity and it is reduced to the formula used by

Kobas et al. (2005) when hz�i = ð1=mÞ.

The author thanks M. de Boissieu and M. Onoda for

valuable discussions.
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